The mitochondrial phosphate carrier (mPiC), encoded by the nuclear gene SLC25A3, is synthesized with an N-terminus mitochondrial targeting sequence (MTS), enabling its import into the mitochondria. mPiC imports inorganic phosphate (Pi) into the mitochondrial matrix for ATP production and other matrix phosphorylation reactions, as well as regulates mitochondrial Ca2+ uptake and buffering of matrix Ca2+. PiC also imports copper (Cu), crucial to COX subunit holoenzyme assembly. Variants in SLC25A3 exist and lead to mPiC deficiency (MPCD), cause a rare autosomal recessive disease with no current cure; patients with MPCD usually die within the first year of life. We have developed a novel therapeutic approach using TAT-mPiC fusion protein for cellular delivery since the TAT peptide enables delivery of proteins across biological membranes. We designed, produced, and purified the TAT-mPiC fusion protein. The fusion protein is delivered into the mitochondria and localizes within the mIM, its natural cellular location, as a processed protein. Treatment of mPiC-knockdown cells with TAT-mPiC fusion protein increased cell growth and improved bioenergetic capabilities, as measured by oxygen consumption rate (OCR), ATP production, and reduction in lactate secretion. Most importantly, TAT-mPiC restored Pi and Cu delivery into the mitochondrial matrix. TAT-mPiC fusion protein also restored the mitochondrial activity of cells harboring various mitochondrial defects. This study presents the first successful delivery of a mitochondrial transmembrane carrier using the TAT-fusion system, offering a potential early treatment strategy for newborns with mPiC deficiency.
Read full abstract- All Solutions
Editage
One platform for all researcher needs
Paperpal
AI-powered academic writing assistant
R Discovery
Your #1 AI companion for literature search
Mind the Graph
AI tool for graphics, illustrations, and artwork
Unlock unlimited use of all AI tools with the Editage Plus membership.
Explore Editage Plus - Support
Overview
1305 Articles
Published in last 50 years
Articles published on Protein Replacement
Authors
Select Authors
Journals
Select Journals
Duration
Select Duration
1231 Search results
Sort by Recency