Hyperuricemia can be stratified into four subtypes according to renal uric acid handling. The aim of this study was to comprehensively describe the biologic characteristics (including genetic background) of clinically defined hyperuricemia subtypes in two large geographically independent gout cohorts. Hyperuricemia subtype was defined as renal uric acid overload (ROL), renal uric acid underexcretion (RUE), combined, or renal normal. Twenty single nucleotide polymorphisms (SNPs) previously identified as gout risk loci or associated with serum urate (SU) concentration in the East Asian population were genotyped. Weighted polygenic risk scores were calculated to assess the cumulative effect of genetic risks on the subtypes. Of the 4,873 participants, 8.8% had an ROL subtype, 60.9% RUE subtype, 23.1% combined subtype, and 7.2% normal subtype. The ROL subtype was independently associated with older age at onset, lower SU, tophi, and diabetes mellitus; RUE was associated with lower body mass index (BMI) and non-diabetes mellitus; the combined subtype was associated with younger age at onset, higher BMI, SU, estimated glomerular filtration rate (eGFR), and smoking; and the normal subtype was independently associated with older age at onset, lower SU, and eGFR. Thirteen SNPs were associated with gout with 6 shared loci and subtype-dependent risk loci patterns. High polygenic risk scores were associated with ROL subtype (odds ratio [OR] = 9.63, 95% confidence interval [95% CI] 4.53-15.12), RUE subtype (OR = 2.18, 95% CI 1.57-3.03), and combined subtype (OR = 6.32, 95% CI 4.22-9.48) compared with low polygenic risk scores. Hyperuricemia subtypes classified according to renal uric acid handling have subtype-specific clinical and genetic features, suggesting subtype-unique pathophysiologic mechanisms.
Read full abstract