Vertical flow-constructed wetlands (VFCWs) are treatment systems that can be used for the phytoremediation of highly polluted textile wastewater. Using plant-derived biochar to simultaneously improve the contaminant removal performance of CWs and sustainable utilization of harvested plant biomass is an interesting proposition. The present study explored the phytoremediation potential of Phragmites karka and verified the impact of using P. karka-derived biochar as a substrate in VFCWs for the treatment of textile wastewater. For this, three types of VFCWs were designed; (i) non-vegetated (VFCW), (ii) vegetated with P. karka (VFCW–P), and (iii) vegetated with P. karka and amended with P. karka-derived biochar (VFCW-BP) and semi-batch experiments were conducted. The investigation confirmed that wetlands using biochar as substrate were more efficient than other wetlands in pollutant load reduction. The maximum pollutant removal efficiencies were recorded for VFCW-BP vis-à-vis COD (83.61%), color (77.87%), chloride (73.22%), calcium (73.52%), sodium (67.18%), and potassium (75.72%) after five days. Furthermore, biochar addition enhanced the growth conditions for wetland plants by alleviating osmotic and oxidative stresses and hence helped them to perform better while removing pollutants. The maximum reduction of various pollutant parameters was reached within 72 h, after which remediation efficiency was slowed down. The study suggests that VFCW with biochar amendment is a useful strategy for textile wastewater treatment. Because the experimental design satisfies the needs for low-cost wastewater treatment, it may find widespread applications.
Read full abstract