Logical omniscience states that the knowledge set of ordinary rational agents is closed for its logical consequences. Although epistemic logicians in general judge this principle unrealistic, there is no consensus on how it should be restrained. The challenge is conceptual: we must find adequate criteria for separating obvious logical consequences (consequences for which epistemic closure certainly holds) from non-obvious ones. Non-classical game-theoretic semantics has been employed in this discussion with relative success. On the one hand, with urn semantics [15], an expressive fragment of classical game semantics that weakens the dependence relations between quantifiers occurring in a formula, we can formalize, for a broad array of examples, epistemic scenarios in which an individual ignores the validity of some first-order sentence. On the other hand, urn semantics offers a disproportionate restriction of logical omniscience. Therefore, an improvement of this system is needed to obtain a better solution of the problem. In this paper, I argue that our linguistic competence in using quantifiers requires a sort of basic hypothetical logical knowledge that can be formulated as follows: when inquiring after the truth-value of ∀xφ, an individual might be unaware of all substitutional instances this sentence accepts, but at least she must know that, if an element a is given, then ∀xφ holds only if φ(x/a) is true. This thesis accepts game-theoretic formalization in terms of a refinement of urn semantics. I maintain that the system so obtained (US+) affords an improved solution of the logical omniscience problem. To do this, I characterize first-order theoremhood in US+. As a consequence of this result, we will see that the ideal reasoner depicted by US+ only knows the validity of first-order formulas whose Herbrand witnesses can be trivially found, a fact that provides strong evidence that our refinement of urn semantics captures a relevant sense of logical obviousness.
Read full abstract