Clinical failure of dental resin-composite restorations is mainly due to bacterial-mediated secondary caries formation. Therefore, the development of a flowable resin-composite material having inherent antibacterial properties is crucial to enhance the durability of dental restorations. Herein, dental flowable resin-composite material was modified with chlorhexidine-loaded mesoporous silica nanoparticles (CHX-MSN) to induce in situ antibacterial properties against S. mutans. Mesoporous silica nanoparticles loaded with chlorhexidine (CHX-MSN) were formulated and characterized for drug-loading/encapsulation efficiency, morphology by electron microscopy, and infrared spectral analysis. CHX-MSN were incorporated into the flowable composite material at different concentrations of 1, 5, and 10% (w/w) and examined at two time points (baseline and 3 months in artificial saliva). The CHX-MSN modified composites exhibited an initial CHX release burst followed by a steady release up to 30 days. The antimicrobial efficacy of the modified composites was evaluated by crystal violet assay, MTT assay, and confocal laser scanning microscopy. In addition to measuring the degree of conversion and cytotoxicity, the mechanical properties were characterized by surface microhardness and flexural strength. The modified composites demonstrated a significant increase in antimicrobial properties compared to the unmodified control (p < 0.05) which is dependent on the concentration of the CHX-MSN nanoparticles. In addition, the modified composites possessed acceptable biocompatibility without adversely affecting mechanical properties and degree of conversion up to 5% addition of CHX-MSN nanoparticles. This study introduced a protocol to develop resin-based flowable dental composite material having superior antibacterial property against cariogenic biofilms aiming for enhancing clinical longevity of dental restorations.Graphical
Read full abstract