We demonstrate an improved stability analysis based on a partition oriented technique for discrete-time systems with interval time-varying delay. The partition oriented technique introduces beneficial terms contributing to the negative definiteness of the Lyapunov function difference, meanwhile completely avoiding traditional inequality based approaches. In contrast, nonpartitioning oriented techniques do not put emphasis on further dividing the interval of the summation in the Lyapunov function. Herein, we demonstrate that the advantages of exploiting partitioning techniques manifest the relaxed stability criteria, as well as the flexibility to tune tradeoff between allowable timedelay range performance and computational load. Simulation carried out on a benchmark discrete-time system reveals the significant improvement in terms of maximum allowable upper bound in comparison.
Read full abstract