Abstract In the two preceding parts of this series of papers, we introduced and studied a recursion scheme for constructing joint eigenfunctions $J_N(a_+, a_-,b;x,y)$ of the Hamiltonians arising in the integrable $N$-particle systems of hyperbolic relativistic Calogero–Moser type. We focused on the 1st steps of the scheme in Part I and on the cases $N=2$ and $N=3$ in Part II. In this paper, we determine the dominant asymptotics of a similarity-transformed function $\textrm{E}_N(b;x,y)$ for $y_j-y_{j+1}\to \infty $, $j=1,\ldots , N-1$ and thereby confirm the long-standing conjecture that the particles in the hyperbolic relativistic Calogero–Moser system exhibit soliton scattering. This result generalizes a main result in Part II to all particle numbers $N>3$.
Read full abstract