Electron energisation by magnetic reconnection has historically been studied in the Lagrangian guiding-centre framework. Insights from such studies include that Fermi acceleration in magnetic islands can accelerate electrons to high energies. An alternative Eulerian fluid formulation of electron energisation was recently used to study electron energisation during magnetic reconnection in the absence of magnetic islands. Here, we use particle-in-cell simulations to compare the Eulerian and Lagrangian models of electron energisation in a set-up where reconnection leads to magnetic island formation. We find the largest energisation at the edges of magnetic islands. There, energisation related to the diamagnetic drift dominates in the Eulerian model, while the Fermi related term dominates in the Lagrangian model. The models predict significantly different energisation rates locally. A better agreement is found after integrating over the simulation domain. We show that strong magnetic curvature can break the magnetic moment conservation assumed by the Lagrangian model, leading to erroneous results. The Eulerian fluid model is a complete fluid description and accurately models bulk energisation. However, local measurements of its constituent energisation terms need not reflect locations where plasma is heated or accelerated. The Lagrangian guiding centre model can accurately describe the energisation of particles, but it cannot describe the evolution of the fluid energy. We conclude that while both models can be valid, they describe two fundamentally different quantities, and care should be taken when choosing which model to use.
Read full abstract- All Solutions
Editage
One platform for all researcher needs
Paperpal
AI-powered academic writing assistant
R Discovery
Your #1 AI companion for literature search
Mind the Graph
AI tool for graphics, illustrations, and artwork
Journal finder
AI-powered journal recommender
Unlock unlimited use of all AI tools with the Editage Plus membership.
Explore Editage Plus - Support
Overview
297 Articles
Published in last 50 years
Articles published on Related Term
Authors
Select Authors
Journals
Select Journals
Duration
Select Duration
279 Search results
Sort by Recency