Ti-Al2O3 composites have demonstrated favorable characteristics for use in load-bearing biomedical implant applications; however, the influence of Al2O3 reinforcement particles and Ti-Al intermetallics on the electrochemical and tribo-electrochemical responses of Ti are not well-understood. This study explored the corrosion and tribocorrosion characteristics of powder metallurgy-manufactured Ti-Al2O3 composites in a simple physiological saline solution at body temperature. Electrochemical analysis was performed by electrochemical impedance spectroscopy (EIS), and potentiodynamic polarization and tribo-electrochemical mechanisms were explored under open circuit potential (OCP) against a 10 mm diameter alumina ball in a ball-on-plate tribometer with reciprocating configuration. Results revealed that the corrosion behavior of Ti was adversely affected by the development of a heterogeneous oxide film on the Ti matrix and the Ti-Al intermetallic phases formed by the interaction of Ti and Al2O3 particles. However, there was a drastic improvement in tribocorrosion behavior, evidenced by decreased corrosion tendency under sliding and a marked reduction in wear volume, primarily as a result of the decreased wear damage resulting from the load-bearing reinforcements.
Read full abstract