Considering Underwater Wireless Sensor Networks (UWSNs) have limited power resources (low bandwidth, long propagation delays, and non-rechargeable batteries), it is critical that they develop solutions to reduce power usage. Clustering is one solution because it not only saves energy consumption but also improves scalability and data integrity. The design of UWSNs is vital to the development of clustering algorithms. The limited energy of sensor nodes, narrow transmission bandwidth, and unpredictable topology of mobile Underwater Acoustic Wireless Sensor Networks (UAWSNs) make it challenging to build an effective and dependable underwater communication network. Despite its success in data dependability, the acoustic underwater communication channel consumes the greatest energy at a node. Recharging and replacing a submerged node’s battery could be prohibitively expensive. We propose a network architecture called Member Nodes Supported Cluster-Based Routing Protocol (MNS-CBRP) to achieve consistent information transfer speeds by using the network’s member nodes. As a result, we use clusters, which are produced by dividing the network’s space into many minute circular sections. Following that, a Cluster Head (CH) node is chosen for each circle. Despite the fact that the source nodes are randomly spread, all of the cluster heads are linked to the circle’s focal point. It is the responsibility of the MNS-CBRP source nodes to communicate the discovered information to the CH. The discovered data will then be sent to the CH that follows it, and so on, until all data packets have been transferred to the surface sinks. We tested our techniques thoroughly using QualNet Simulator to determine their viability.
Read full abstract