The application of autonomous mobile robots (AMRs) has gradually become crucial in smart factories due to the advantages of improving production efficiency and reducing labour costs. Motion planning has been a key part of AMR control development. This paper presents motion planning and position tracking control systems of an omnidirectional wheel AMR powered by a hybrid fuel cell and battery power source. First, the kinematical and dynamic models of the AMR are introduced. The navigation system comprises three loops, with the first loop being motor control, the second loop being position tracking control, and a motion planning layer. The position data of the AMR for feedback control is obtained through sensor fusion of data from the inertial measurement unit (IMU) sensor, encoder sensor, and ranging sensor with simultaneous localisation and mapping (SLAM) algorithm. The motion planning is then applied to obtain an optimal path with the shortest distance and collision-free movement. In addition, the tracking algorithm is designed to drive the AMR to follow the optimal path and achieve high accuracy. The experimental results show a 30% improvement in tracking accuracy compared to traditional approaches and 8 hours of continuous working, which is promising for industrial applications, and the results are satisfactory in terms of both accuracy and efficiency requirements.
Read full abstract