Analysis of plant behavior under diverse environmental conditions would be impossible without the methods for adequate assessment of the processes occurring in plants. The photosynthetic apparatus and its reaction to stress factors provide a reliable source of information on plant condition. One of the most informative methods based on monitoring the plant biophysical characteristics consists in detection and analysis of chlorophyll a fluorescence. Fluorescence is mainly emitted by chlorophyll a from the antenna complexes of photosystem II (PSII). However, fluorescence depends not only on the processes in the pigment matrix or PSII reaction centers but also on the redox reactions at the PSII donor and acceptor sides and even in the entire electron transport chain. Presently, a large variety of fluorometers from various manufacturers are available. Although application of such fluorometers does not require specialized training, the correct interpretation of the results would need sufficient knowledge for converting the instrumental data into the information on the condition of analyzed plants. This review is intended for a wide range of specialists employing fluorescence techniques for monitoring the physiological plant condition. It describes in a comprehensible way the theoretical basis of light emission by chlorophyll molecules, the origin of variable fluorescence, as well as relations between the fluorescence parameters, the redox state of electron carriers, and the light reactions of photosynthesis. Approaches to processing and analyzing the fluorescence induction curves are considered in detail on the basis of energy flux theory in the photosynthetic apparatus developed by Prof. Reto J. Strasser and known as a “JIP-test.” The physical meaning and relation of each calculated parameter to certain photosynthetic characteristics are presented, and examples of using these parameters for the assessment of plant physiological condition are outlined.
Read full abstract