Poly(ethylene terephthalate) (PET) is a common single-use plastic and a major contributor to plastic waste. PET upcycling through enzymatic depolymerization has drawn significant interests, but lack of robust enzymes in acidic environments remains a challenge. This study investigates in-situ product removal (ISPR) of protons from enzymatic PET depolymerization via a membrane reactor, focusing on the ICCG variant of leaf branch compost cutinase. More than two-fold improvements in overall PET depolymerization and terephthalic acid yields were achieved employing ISPR for an initial PET loading of 10 mgPET mlbuffer-1. The benefit of ISPR was reduced for a lower initial loading of 1 mgPET mlbuffer-1 due to decreased need for pH stabilization of the enzyme-containing solutions. A back-of-envelop analysis suggests that at a modest dilution ratio, ISPR could help achieve savings on caustic base solutions used for pH control in a bioreactor. Our study provides valuable insights for future ISPR developments for enzymatic PET depolymerization, addressing the pressing need for more sustainable solutions towards plastic recycling and environmental conservation.
Read full abstract