This paper considers a conflict situation on the plane as follows. A fast evader E has to break out the encirclement of slow pursuers P j1,...,j n = {P j1,..., P jn }, n ≥ 3, with a miss distance not smaller than r ≥ 0. First, we estimate the minimum guaranteed miss distance from E to a pursuer P a , a ∈ {j 1,..., j n }, when the former moves along a given straight line. Then the obtained results are used to calculate the guaranteed estimates to a group of two pursuers P b,c = {P b , P c }, b, c ∈ {j 1,..., j n }, b ≠ c, when E maneuvers by crossing the rectilinear segment P b P c , and the state passes to the domain of the game space where E applies a strategy under which the miss distance to any of the pursuers is not decreased. In addition, we describe an approach to the games with a group of pursuers P j1,... jn , n ≥ 3, in which E seeks to break out the encirclement by passing between two pursuers P b and P c , entering the domain of the game space where E can increase the miss distance to all pursuers by straight motion. By comparing the guaranteed miss distances with r for all alternatives b, c ∈ {j 1,..., j n }, b ≠ c, and a ∉ {b, c}, it is possible to choose the best alternative and also to extract the histories of the game in which the designed evasion strategies guarantee a safe break out from the encirclement.
Read full abstract