Animals evolve mechanisms to send and receive communication signals through multiple sensory channels during crucial behavioral contexts such as aggression and reproduction. This ensures the transmission of important context-dependent signals that supply either the same (redundant) or different (non-redundant) information to the receiver. Despite the importance of multimodal communication, there are relatively few species in which information on sender signals and receiver responses are known. Further, little is known about where context-dependent unimodal and multimodal information is processed in the brain to produce adaptive behaviors. We used the African cichlid, Astatotilapia burtoni, to investigate how unimodal and multimodal signals are processed within the female brain in a reproductive context. During courtship, dominant males produce low frequency sounds in conjunction with visual displays (quivers) directed towards receptive gravid females. We compared affiliation behaviors and neural activation patterns in gravid females exposed to visual, acoustic and visual-acoustic signals from courting dominant males. Females displayed reduced affiliation in auditory-only conditions, but similar affiliation during visual and visual-acoustic conditions, demonstrating that visual-acoustic signaling from males is non-redundant but vision dominates. Using the neural activation marker cfos, we identified differential activation in specific socially relevant brain nuclei between unimodal and multimodal conditions and distinct neural co-activation networks associated with each sensory context. Combined with our previous work on chemosensory signaling, we propose that A. burtoni represents a valuable vertebrate model for studying context-dependent behavioral and neural decision making associated with non-redundant multimodal communication.
Read full abstract