Passive microwave observation at multiple frequencies has received increasing research interests due to its capability to provide comprehensive information of land surface properties. This paper contributes to the simulation of land surface emission and estimation of vegetation optical depth (VOD) at multiple frequencies using a discrete scattering model with a single set of model parameter values. Validity of the Tor Vergata (TVG) discrete scattering model in simultaneously reproducing the Soil Moisture Active Passive (SMAP) L-band (1.4 GHz) and Advanced Microwave Scanning Radiometer 2 (AMSR2) C- (6.925 GHz) and X-band (10.7 GHz) observations over the Tibetan grassland ecosystem is evaluated. Frequency-specific and multi-frequency calibration strategies are implemented to find the suitable set of model parameter values and to isolate the impact of frequency on parameter values. On this basis, the calibrated TVG model is further used to estimate the VOD, and to investigate the impact of microwave frequency and observation angle on the emission simulations and VOD parameterization.The results show that both frequency-specific and multi-frequency calibration strategies achieve comparable and reasonable simulations of SMAP and AMSR2 observations, confirming the feasibility of using an identical physically-based model (i.e. the calibrated TVG model) to simulate multi-frequency land emission driven by a single set of model parameter values. As such, the dependence of emission components and VOD on frequency can be elaborated after isolating the impact of frequency on parameter values. The VOD values derived from the TVG simulations generally increase with increasing frequency and can be linearly correlated to the LAI variations, while current satellite-based retrievals have almost the same magnitude at the L-, C-, and X-band. The explanation for this can be that the retrieved VOD is different from the theoretical definition. Sensitivity test performed using the calibrated TVG model further shows that polarization-dependence of VOD becomes more apparent with the increasing observation angle and frequency. New parameterization has thus been developed to characterize the dependence of VOD on the frequency, observation angle, and polarization for grassland based on the results of sensitivity test. This study may provide new insights in improving model of land emission and retrievals of SM and VOD with physical interpretability based on multi-frequency satellite observations.
Read full abstract