Frost cracking is one of the primary causes of deterioration in frozen soil structures, yet few relevant numerical studies have been reported, and the simulation of frost cracking in soils remains challenging due to inadequate consideration of reasonable simulation algorithms. Numerous experimental studies have identified frost heave and desiccation shrinkage as the principal cause of frozen soil cracking. On this basis, this study presents a peridynamic (PD) model that considers the coupled effects of frost heaving and desiccation shrinkage for simulating frost cracking in soils during freezing process. The heat conduction equation is reformulated using the peridynamic differential operator (PDDO). The variation of thermal parameters for soils is addressed using the thermal enthalpy method, equivalent homogeneous method, and linear release assumption of latent heat. The frost-heaving load induced by pore water is represented using an equivalent displacement load. The multiphysics solution using PDDO and bond-based peridynamics (BBPD) considering freezing heave and desiccation shrinkage is developed for the first time. By simulating the frost cracking of a two-dimensional soil strip after model validations, the resulting crack pattern closely resembles the experimental observation. It indicates that the present model can capture the phase transition interface (PTI) and cracking behaviors of frozen soils.
Read full abstract