Pseudoneglect, that is the tendency to pay more attention to the left side of space, is typically assessed with paper-and-pencil tasks, particularly line bisection. In the present study, we used an everyday task with more complex stimuli. Subjects’ task was to look for pre-specified objects in images of real-world scenes. In half of the scenes, the search object was located on the left side of the image (L-target); in the other half of the scenes, the target was on the right side (R-target). To control for left–right differences in the composition of the scenes, half of the scenes were mirrored horizontally. Eye-movement recordings were used to track the course of pseudoneglect on a millisecond timescale. Subjects’ initial eye movements were biased to the left of the scene, but less so for R-targets than for L-targets, indicating that pseudoneglect was modulated by task demands and scene guidance. We further analyzed how horizontal gaze positions changed over time. When the data for L- and R-targets were pooled, the leftward bias lasted, on average, until the first second of the search process came to an end. Even for right-side targets, the gaze data showed an early left-bias, which was compensated by adjustments in the direction and amplitude of later saccades. Importantly, we found that pseudoneglect affected search efficiency by leading to less efficient scan paths and consequently longer search times for R-targets compared with L-targets. It may therefore be prudent to take spatial asymmetries into account when studying visual search in scenes.
Read full abstract