Candida Antarctica lipase B (CALB), a specific enzyme to catalyze the hydrolysis of esters, can be a good candidate for acetylcholine (ACh) hydrolysis instead of acetylcholinesterase. The catalytic mechanism of the CALB acylation, as the first stage in the hydrolysis reaction, with ACh and methylcaprylate (MEC) has been examined by using density functional theory technique. The significant emphasis of this article is on the free energy barriers for the acylation step of hydrolysis reactions. Computed free energy barriers of the first step are 9.2 and 15.9kcalmol−1, but for the second step are 7.9 and 11.6kcalmol−1 for MEC and ACh respectively. Activation free energies are in the comparable and acceptable range and imply both of two reactions are theoretically possible. The stability role of the adjacent amino acids was examined by using two applied tools. It is exposed that the oxyanion hole residues decrease energy barriers by stabilizing the transition state structures.
Read full abstract