In this study, response surface methodology was used to determine the optimum raw sugar beet juice purification process conditions using bentonite to produce inverted liquid sugar. For this purpose, impact of factors on the purification process such as bentonite concentration (1-5 gr/li), pH (3.5-6) and temperature (35-95 ˚C) was investigated. For each response, a second-order polynomial model was developed using multiple linear regression analysis. Correlation coefficients of fitted regression models of color, turbidity, ash, adjusted purity and invert sugar for juice purification process were determined as 0.95, 0.89, 0.90, 0.91 and 0.96 respectively. Results showed that while increasing the bentonite concentration increased the turbidity content but the adjusted purity decreased, and had no significant effect on other parameters. At lower pH levels, separation of color and turbidity causes by bentonite, but was in creased it decreased separation of ash and also increased invert sugar levels. With increasing temperature from 35˚C, to 95˚C, Separation of color and turbidity causes and invert sugar and adjusted purity content as well as increased, while this variable has no significant effect on syrup ash content. The optimum conditions of raw sugar beet juice purification process using bentonite was determined to obtain minimum color, turbidity and ash with maximum invert sugar and adjusted purity which were verified experimentals were found to be bentonite concentration of 1.70 gr/li, pH of 4.47 and temperature of 75˚C. At this optimum point, color, turbidity, ash, adjusted purity and invert sugar content were found to be 1664 ICU420, 6.3 NTU, 0.55 %, 93.9 % and 1.60 %, respectively.
Read full abstract