A small amount of leachate with complex composition will be produced during the compressing of municipal solid waste in refuse transfer stations. In this study, the freeze-melt method, a green and efficient wastewater treatment technology, was used to treat the compressed leachate. The effects of freezing temperature, freezing duration, and ice melting method on the removal rates of contaminants were investigated. The results showed that the freeze-melt method was not selective for the removal of chemical oxygen demand (COD), total organic carbon (TOC), ammonia-nitrogen (NH3-N) and total phosphorus (TP). The removal rate of contaminants was positively correlated with freezing temperature and negatively correlated with freezing duration, and the slower the growth rate of ice, the higher the purity of ice. When the compressed leachate was frozen at −15 °C for 42 h, the removal rates of COD, TOC, NH3-N and TP were 60.00%, 58.40%, 56.89% and 55.34%, respectively. Contaminants trapped in ice were removed during the melting process, especially in the early stages of melting. The divided melting method was more beneficial than the natural melting method in removing contaminants during the initial stage of melting, which contributes to the reduction of produced water losses. This study provides a new idea for the treatment of small amounts of highly concentrated leachate generated by compression facilities distributed in various corners of the city.
Read full abstract