The aim of this work was to highlight a considerable and broad problem in UGT1A10 activity assessment that has led to underestimation of its role in intestinal glucuronidation of drugs and other xenobiotics. The reason appears to be poor activity of the commercial UGT1A10 that is used by many laboratories, and here we have tested it by comparison with our recombinant His-tagged UGT1A10 (designated as UGT1A10-H), both expressed in insect cells. The glucuronidation rates of morphine, estradiol, estrone, SN-38, diclofenac, 4-methylumbelliferone, 7-amino-4-methylcoumarin, N-(3-carboxypropyl)-4-hydroxy-1,8-naphthalimide, and bavachinin were assayed. The results revealed that the activity of commercial UGT1A10 was low, very low, and in the cases of morphine, estrone, 7-methyl-4-aminocoumarin, and bavachinin it was below the detection limit. On the other hand, under the same conditions, UGT1A10-H exhibited high glucuronidation rates toward all these compounds. Moreover, using estradiol, morphine, and estrone, in the presence and absence of suitable inhibitors, nilotinib or atractylenolide I, it was demonstrated that UGT1A10-H, but not the commercial UGT1A10, provides a good tool to study the role of native UGT1A10 in the human intestine. The results also suggest that much of the data in the literature on UGT1A10 activity may have to be re-evaluated.
Read full abstract