Medical devices composed of titanium (Ti) should exhibit antibacterial and osteogenic activities to achieve both infection prevention and rapid bone reconstruction. Here, a Ti surface was modified by performing magnetron sputtering (MS) using pure Mg or Mg-30Ca alloy targets for surface functionalization. MC0, prepared with a pure Mg target, had a crystalline metallic-Mg coating layer, whereas MC30, prepared with an Mg-30Ca alloy target, had an amorphous coating composed of Mg and Ca. Both samples rapidly dissolved when immersed in a cell culture medium and exhibited antibacterial activities against methicillin-resistant Staphylococcus aureus and cytotoxicity against MC3T3-E1 cells. Furthermore, MC30 promoted the proliferation and calcification of MC3T3-E1 cells because of the subsequent deposition of calcite on the surface after rapid dissolution. Our findings are the first to reveal that MS performed by using an Mg-30Ca alloy target endowed Ti surfaces with functional changes from antibacterial to osteogenic activities over time. Our results provide fundamental insights into the surface design of Ti-based medical devices for enhanced bone reconstruction and infection prevention and offer possibilities for biomedical applications of Mg-based coatings.
Read full abstract