A dual-tunable vortex metalens is proposed that leverages deep neural network (DNN) and particle swarm optimization algorithm (PSO), incorporating the use of the phase-change material Sb2S3, which enables simultaneous tunable of both the focal length of the focused vortex beam and the topological charge. The control of traditional vortex metalens relies on changing the polarisation state of the incident light; however, its control range is limited. We employed neural network algorithms to learn the complex mapping relationship between the unit structure and the phase, achieving a fast and accurate prediction of the vortex metalens's phase. Compared with traditional simulation methods, the application of this neural network significantly reduces the time consumption of the design process and avoids the need for re-simulation. Furthermore, our design transcends limitations associated with specific wavelengths and enables the rapid design of tunable metalens across the 1–1.5 μm wavelength range, offering flexibility for the development of dual-tunable metalens. Based on this scheme, we simulated vortex metalens with tunable focal length and topological charge, and the results showed that the simulation results were consistent with the theoretical predictions.
Read full abstract