The article presents the results of a determination of the load attributed to rail vehicles transported by a ferry, considering the influence of sea waves on its hull. A mathematic model describing the displacements of a train ferry, which transported rail vehicles on its decks during rolling oscillations, was created. Calculated accelerations were used to identify the load of components from a dynamics point of view and they were subsequently applied as an input to the analysis of the strength of the open wagon main-bearing structure in a standard scheme of interaction with a train ferry deck. The calculated maximal equivalent stresses in the structure of the fastening units exceeded the valid permissible values. To confirm the theoretical results, experimental studies focused on the strength analysis of the open wagon placed on the railway ferry deck, which was performed in real operational conditions. Electrical voltage sensors were used to determine stress distribution in the areas where the body was attached to the deck. In this case, sensors of the strain gauges, i.e., tensiometers, were used. The base of 25 mm is a dimensional parameter and the resistance, 124 Ohms, is the tensiometer parameter. Verification has been performed and, based on the obtained experimental results, it has been established that the hypothesis' adequacy is not rejected. The authors developed some measures for adaption of the lashing devices for rail cars on train ferries, which can ensure their safe transportation by sea. The strength calculation demonstrated that, in the new scheme of securing the transported railway vehicles on the railway train ferry, the stresses in its structure do not exceed the permissible values. The article also includes information about the results of the strength calculation of a container placed on a roll trailer transported by a train ferry. This research will contribute to the development of measures regarding the safety of railway vehicle transportation by sea ferry and better efficiency of train ferry transportation.
Read full abstract