In this study, a β-tricalcium phosphate (β-TCP)/poly (lactic-co-glycolic acid) (PLGA) bone tissue scaffold was loaded with osteogenesis-promoting drug HA15 and constructed by three-dimensional (3D) printing technology. This drug delivery system with favorable biomechanical properties, bone conduction function, and local release of osteogenic drugs could provide the basis for the treatment of bone defects. The biomechanical properties of the scaffold were investigated by compressive testing, showing comparable biomechanical properties with cancellous bone tissue. Furthermore, the microstructure, pore morphology, and condition were studied. Moreover, the drug release concentration, the effect of anti-tuberculosis drugs in vitro and in rabbit radial defects, and the ability of the scaffold to repair the defects were studied. The results show that the scaffold loaded with HA15 can promote cell differentiation into osteoblasts in vitro, targeting HSPA5. The micro-computed tomography scans showed that after 12 weeks of scaffold implantation, the defect of the rabbit radius was repaired and the peripheral blood vessels were regenerated. Thus, HA15 can target HSPA5 to inhibit endoplasmic reticulum stress which finally leads to promotion of osteogenesis, bone regeneration, and angiogenesis in the rabbit bone defect model. Overall, the 3D-printed β-TCP/PLGA-loaded HA15 bone tissue scaffold can be used as a substitute material for the treatment of bone defects because of its unique biomechanical properties and bone conductivity.
Read full abstract