Shigellosis represents a significant global health concern particularly affecting children under 5 years in low- and middle-income countries (LMICs) and is associated with stunting and antimicrobial resistance. There is a critical need for an effective vaccine offering broad protection against the different Shigella serotypes. A correlate of protection has not yet been established but there is a general consensus about the relevant role of anti-O-Antigen-specific IgG and its functionality evaluated by the Serum Bactericidal Assay (SBA). This study aims to characterize a high-throughput luminescence-based SBA (L-SBA) against seven widespread Shigella serotypes. The assay was previously developed and characterized for S. sonnei and S. flexneri 1b, 2a, and 3a and has now been refined and extended to an additional five serotypes (S. flexneri 4a, 5b, 6, X, and Y). The characterization of the assay with human sera confirmed the repeatability, intermediate precision, and linearity of the assays; both homologous and heterologous specificity were verified as well; finally, limit of detection and quantification were established for all assays. Moreover, different sources of baby rabbit complement showed to have no impact on L-SBA output. The results obtained confirm the possibility of extending the L-SBA to multiple Shigella serotypes, thus enabling analysis of the functional response induced by natural exposure to Shigella in epidemiological studies and the ability of candidate vaccines to elicit cross-functional antibodies able to kill a broad panel of prevalent Shigella serotypes in a complement-mediated fashion.
Read full abstract