We formulate the gradient Dirichlet flow of Sp(2)Sp(1)\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\ extrm{Sp}(2)\ extrm{Sp}(1)$$\\end{document}-structures on 8-manifolds, as the first systematic study of a geometric quaternion-Kähler (QK) flow. Its critical condition of harmonicity is especially relevant in the QK setting, since torsion-free structures are often topologically obstructed. We show that the conformally parallel property implies harmonicity, extending a result of Grigorian in the G2\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\ extrm{G}_2$$\\end{document} case. We also draw several comparisons with Spin(7)\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\ extrm{Spin}(7)$$\\end{document}-structures. Analysing the QK harmonic flow, we prove an almost-monotonicity formula, which implies to long-time existence under small initial energy, via ϵ\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\epsilon $$\\end{document}-regularity.We set up a theory of harmonic QK solitons, constructing a non-trivial steady example. We produce explicit long-time solutions: one, converging to a torsion-free limit on the hyperbolic plane; and another, converging to a limit which is harmonic but not torsion-free, on the manifold SU(3)\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\ extrm{SU}(3)$$\\end{document}. We also study compactness and the formation of singularities.
Read full abstract