The interest and studies on nonlinear waves are increased recently for their importance in the interaction with floating and fixed bodies. It is also well-known that nonlinearities influence wave crest and wave trough distributions, both deviating from the Rayleigh law. In this paper, a theoretical crest distribution is obtained, taking into account the extension of Boccotti’s quasideterminism theory (1982, “On Ocean Waves With High Crests,” Meccanica, 17, pp. 16–19), up to the second order for the case of three-dimensional waves in finite water depth. To this purpose, the Fedele and Arena (2005, “Weakly Nonlinear Statistics of High Random Waves,” Phys. Fluids, 17(026601), pp. 1–10) distribution is generalized to three-dimensional waves on an arbitrary water depth. The comparison with Forristall’s second order model (2000, “Wave Crest Distributions: Observations and Second-Order Theory,” J. Phys. Oceanogr., 30(8), pp. 1931–1943) shows the theoretical confirmation of his conclusion: The crest distribution in deep water for long-crested and short-crested waves are very close to each other; in shallow water the crest heights in three-dimensional waves are greater than values given by the long-crested model.
Read full abstract