A hollow-core fiber based on photonic quasicrystal arrays is theoretically proposed for high-quality light wave propagation with high polarization maintaining performance and low nonlinearity. This fiber, called hollow-core photonic quasicrystal fiber (HC-PQF), can simultaneously realize a high birefringence that reaches 1.345 × 10−2 and a small nonlinear coefficient of 1.63 × 10−3 W−1·km−1 at a communication wavelength of 1.55 μm due to the air-filled core and unique quasiperiodic fiber structure. To further demonstrate the controllability of the nonlinear coefficient and the application of sensor and polarization-maintaining fiber, the nonlinearity is investigated by filling different inert gases in the fiber core while the birefringence keeps a high order of 10−2. In the wavelength range λ ∈ [1.53 μm, 1.57 μm], the dispersion is near zero and flattened. The HC-PQF is expected to be used for applications in optical communication, high power pulse transmission, polarization beam splitters, etc.
Read full abstract