Excessive energy intake has been shown to affect the mammalian target of the rapamycin (mTOR) signaling pathway and breast cancer risk. It is not well understood whether there are gene-environment interactions between mTOR pathway genes and energy intake in relation to breast cancer risk. The study included 1642 Black women (809 incident breast cancer cases and 833 controls) from the Women's Circle of Health Study (WCHS). We examined interactions between 43 candidate single-nucleotide polymorphisms (SNPs) in 20 mTOR pathway genes and quartiles of energy intake in relation to breast cancer risk overall and by ER- defined subtypes using Wald test with a 2-way interaction term. AKT1 rs10138227 (C > T) was only associated with a decreased overall breast cancer risk among women in quartile (Q)2 of energy intake, odds ratio (OR) = 0.60, 95% confidence interval (CI) 0.40, 0.91 (p-interaction = 0.042). Similar results were found in ER- tumors. AKT rs1130214 (C > A) was associated with decreased overall breast cancer risk in Q2 (OR = 0.63, 95% CI 0.44, 0.91) and Q3 (OR = 0.65, 95% CI 0.48, 0.89) (p-interaction = 0.026). HIF-1α C1772T rs11549465 (C > T) was associated with decreased overall breast cancer risk in Q4 (OR = 0.29, 95% CI 0.14, 0.59, p-interaction = 0.007); the results were similar in ER+ tumors. These interactions became non-significant after correction for multiple comparisons. Our findings suggest that mTOR genetic variants may interact with energy intake in relation to breast cancer risk, including the ER- subtype, in Black women. Future studies should confirm these findings.
Read full abstract