ABSTRACTA two-dimensional quantum mechanical model is presented for calculating carrier transport in ultra-thin gate-all-around quantum wire transistor (GAAQWT) and carbon nanotube field effect transistor (CNTFET) using coupled mode space approach. Schrödinger and Poisson’s equations are self-consistently solved involving Non-Equilibrium Green’s Function (NEGF) formalism under the ballistic limit along with dissipative effects in terms of self-energy at both the source and drain ends. Effect of structural parameters on drain current, channel length modulation parameter, quantum capacitance, transconductance, subthreshold swing (SS) and drain induced barrier lowering (DIBL) are studied assuming occupancy of only a few lower sub-bands, where comparison is performed taking all other factors, biases and dimensions identical. High-k dielectric (HfO2) independently surrounding the quantum wire (GaAs) and carbon nanotube shows higher drain current and transconductance for GAAQWT but lower quantum capacitance than that obtained for CNTFET. A smaller variation of CLM for CNFET speaks in favour of it for digital quantum circuit applications, whereas GAAQWT is suitable candidate for low-power applications. Effect of structural parameters is investigated within fabrication limit to analyse the effect on electrical characteristics under lower biasing ranges.
Read full abstract