While traditionally considered a deleterious effect in quantum dot spin qubits, the spin-orbit interaction is recently being revisited as it allows for rapid coherent control by on-chip AC electric fields. For electrons in bulk silicon, spin-orbit coupling (SOC) is intrinsically weak, however, it can be enhanced at surfaces and interfaces, or through atomic placement. Here it is showed that the strength of the spin-orbit coupling can be locally enhanced by more than two orders of magnitude in the manybody wave functions of multi-donor quantum dots compared to a single donor, reaching strengths so far only reported for holes or two-donor system with certain symmetry. These findings may provide a pathway toward all-electrical control of donor-bound spins in silicon using electric dipole spin resonance (EDSR).
Read full abstract