Developing rapid and sensitive methods for monitoring inorganic mercury (Hg2+) and methylmercury (CH3Hg+) in crayfish is crucial for understanding the environmental impact of these contaminants. In this work, a novel tri-mode strategy was developed for highly sensitive monitoring of Hg2+ and CH3Hg+ bioaccumulation in crayfish by inductively coupled plasma mass spectrometry (ICP-MS)/ fluorescence /smartphone colorimetric (RGB) analysis without chromatographic separation. Cation exchange reaction (CER) was performed between Hg2+ and luminescent CdTe quantum dots (QDs), while CH3Hg+ unrealizable CER. The CH3Hg+ can be transformed to Hg2+ by simple UV irradiation, speciation analysis can be realized by detecting the fluorescence of CdTe QDs after incubation by Hg2+ and total Hg2+. In addition, the filtration of reacted CdTe QDs was carried out, ICP-MS was performed to detect exchanged Cd2+ by Hg2+ and total Hg2+, as well the smartphone RGB analysis was performed for membrane colorimetry. The limits of detection (LODs) of Hg2+ and CH3Hg+ for ICP-MS, fluorescence, and colorimetric (RGB) modes were 0.03 ng mL−1, 18 ng mL−1, and 0.9 μg mL−1 respectively. Density Functional Theory (DFT) was employed to validate the mechanism of the CER reaction. CdTe QDs array analysis with five different ligands was performed to eliminate potential ion interferences of Ag+ and Cu2+ that could occur during the CER reaction. The well-designed system was successfully utilized for monitoring trace Hg2+ and CH3Hg+ in crayfish fed Hg2+ and CH3Hg+ contaminative food over a two-week “uptake” period and a three-week “depuration” period. The results indicated that the Hg2+ uptake in different tissues was significantly different from that of CH3Hg+ in all tissues. There was evidence of Hg uptake from water via leaching from food, although the principal source of uptake was from food.
Read full abstract