Quantum private comparison (QPC) is a crucial component of quantum multiparty computing (QMPC), allowing parties to compare their private inputs while ensuring that no sensitive information is disclosed. Many existing QPC protocols that utilize Bell states encounter efficiency challenges. In this paper, we present a novel and efficient QPC protocol that capitalizes on the distinct characteristics of Bell states to enable secure comparisons. Our method transforms private inputs into unitary operations on shared Bell states, which are then returned to a third party to obtain the comparison results. This approach enhances efficiency and decreases the reliance on complex quantum resources. A single Bell state can compare two classical bits, achieving a qubit efficiency of 100%. We illustrate the feasibility of the protocol through a simulation on the IBM Quantum Cloud Platform. The security analysis confirms that our protocol is resistant to both eavesdropping and attacks from participants.
Read full abstract