In the event of a widespread radiological incident, thousands of individuals will require rapid assessment of exposure using validated biodosimetry assays to inform clinical triage. In this scenario, multiple biodosimetry laboratories may be necessary for large-volume sample processing. To meet this need, we have developed a high-throughput assay for the rapid measurement of intracellular protein biomarkers in human peripheral blood samples using an Imaging Flow Cytometry (IFC) platform. The objective of this work was to harmonize and validate the reproducibility of our blood biomarker assay for radiation exposure across three IFC instruments, two located at Columbia University (CU) and the third at Health Canada. The Center for Radiological Research (CRR) at CU served as the central laboratory and reference instrument, where samples were prepared in triplicate, labeled with two radiation responsive leukocyte biomarkers (BAX and phosphor-p53 (Ser37)), and distributed for simultaneous interrogation by each IFC. Initial tests showed that significantly different baseline biomarker measurements were generated on each instrument when using the same acquisition settings, suggesting that harmonization of signal intensities is necessary. Subsequent tests harmonized biomarker measurements after irradiation by modulating laser intensity using two reference materials: unstained samples and standardized rainbow beads. Both methods generated measurements on each instrument without significant differences between the new and references instruments, allowing for the use of one master template to quantify biomarker expression across multiple instruments. Deming regression analyses of 0-5 Gy dose-response curves showed overall good correlation of BAX and p53 values across new and reference instruments. While Bland-Altman analyses indicated low to moderate instrument biases, ROC Curve analyses ultimately show successful discrimination between exposed and unexposed samples on each instrument (AUC values > 0.85).
Read full abstract