The utilization of biomass waste has attracted much interest, but such attention hasn't been paid to the abundant fallen maple leaves in Canada. Herein, we aim to obtain cellulose nanocrystals (CNCs) from maple leaves and explore their potential applications as sustainable stabilizers of Pickering emulsions for the preservation of food products with complicated structures. The results reveal that two types of CNCs were extracted from maple leaves at different alkaline conditions. Octenyl succinic anhydride was selected to modify rod-like CNCs, and the CNC-stabilized oil-in-water Pickering emulsions showed excellent stability. Cinnamaldehyde, a model antibacterial compound, was incorporated in the Pickering emulsions, which exhibited the improved storage stability and sustained antibacterial capacity towards both Gram-positive and Gram-negative bacteria. Shrimp was chosen as an example that has complicated surface structure and is hard to disinfect, and the CNC-stabilized Pickering emulsions could be easily sprayed on the surface of shrimp to inhibit the proliferation of bacteria and inactivate the psychrophilic bacteria responsible for shrimp spoilage at refrigerated condition, so as to preserve the quality of shrimp. Therefore, the current work suggests the possibility to utilize fallen maple leaves as a promising source of CNCs and the applications of CNC-stabilized Pickering emulsions in seafood preservation.
Read full abstract