To investigate the effects of pyrrolidine dithiocarbamate (PDTC) on oxidative stress and mitochondrial function of lung tissue in mice with acute lung injury (ALI) induced by lipopolysaccharide (LPS). Forty female Balb/c mice were randomly divided into normal saline (NS) control group, LPS model group, PDTC group, and PDTC+LPS group, with 10 mice in each group. The model of mice with ALI was reproduced by intraperitoneal injection of 15 mg/kg LPS. PDTC was administered intraperitoneally with 50 mg/kg PDTC 1 hour before LPS treatment in the PDTC+LPS group. The mice in NS control group was given intraperitoneal injection of 0.1 mL NS only, and those in PDTC group was given intraperitoneal injection of 50 mg/kg PDTC only. The mice were sacrificed at 24 hours after model reproduction, and the lung tissues were harvested. The total antioxidant capacity (T-AOC) of lung tissue was measured by spectrophotometric kits. The content of malondialdehyde (MDA) was determined by thiobarbituric acid reactive substances assay. The protein expressions of superoxide dismutases (SOD1, SOD2) and catalase (CAT) in lung tissue were determined by Western Blot. Mitochondria from mouse lungs were isolated, and adenosine triphosphate (ATP) synthesis was measured with a luciferase/luciferin-based approach. The mitochondrial membrane potential (ΔΨm) was estimated by using Rhodamine. The mRNA expressions of mitochondrial uncoupling proteins (UCPs) were determined by reverse transcription-polymerase chain reaction (RT-PCR). LPS stimulation could significantly increase oxidative stress in lung tissue of mice and lead to mitochondrial dysfunction. The results showed that the protein expressions of T-AOC and SOD1 were decreased, the level of MDA was increased, the ATP synthesis was decreased in the mitochondrial, the ΔΨm was decreased, and the mRNA expression of UCP2 was decreased. However, there was no significant change in the expressions of SOD2, CAT in lung tissue and UCP1, UCP3 in the mitochondria. Pretreatment with PDTC could obviously alleviate the increase in LPS-induced oxidative stress in lung tissue and mitigate mitochondrial dysfunction. Compared with the LPS model group, T-AOC in lung tissue of PDTC+LPS group was significantly increased (U/g: 0.35±0.08 vs. 0.31±0.07), the level of MDA was significantly decreased (μmol/mg: 13.29±1.13 vs. 17.54±1.72), the protein expression of SOD1 was significantly upregulated (SOD1 protein: 1.13±0.11 vs. 0.71±0.09), ATP synthesis was significantly increased in the mitochondrial (μmol/mg: 49.23±5.42 vs. 36.92±2.21), ΔΨm was significantly increased (mV: 226.03±11.69 vs. 194.86±7.79), and the mRNA expression of UCP2 was significantly increased (2-ΔΔCt: 0.88±0.06 vs. 0.73±0.04). The differences were statistically significant (all P < 0.05). In lung tissue of normal mice, PDTC treatment also had the effect of anti-oxidizing, reducing oxidative stress and promoting ATP synthesis in the mitochondrial. Compared with the NS control group, the level of T-AOC (U/g: 0.49±0.09 vs. 0.43±0.06) and the protein expressions of SOD2 and CAT (SOD2 protein: 1.33±0.08 vs. 1.00±0.11, CAT protein: 1.39±0.08 vs. 1.00±0.11), and ATP synthesis in the mitochondrial of PDTC group was significantly increased (μmol/mg: 61.53±4.92 vs. 53.33±3.20), MDA was significantly decreased (μmol/mg: 10.27±1.25 vs. 12.27±1.36), with statistical differences, but had no effect on the protein expression of SOD1 in lung tissue and ΔΨm and UCPs mRNA expressions in mitochondrion. LPS can induce ALI in mice, increased oxidative stress in lung tissue, and induce mitochondrial dysfunction by inhibiting ATP synthesis. PDTC pretreatment has anti-oxidative effect on LPS-induced ALI, and can mitigate mitochondrial dysfunction.
Read full abstract