Three types of carbon multi-walled nanotubes (MWNT) with different morphology and mean diameter (7.5, 10.5, 22 nm) were used to produce polymethylmetacrylate-based composites (MWNT/PMMA) with variable MWNT loading (0.5–5wt%). The electrophysical properties of produced composites and electromagnetic response in frequency range of 2–12 GHz were investigated. Electrical conductivity of composites depends on the MWNT type increasing with lowering of the nanotube diameter and loading in composite. Reflectance and transmittance coefficients were calculated from dielectric permittivity data and found to correlate with electrical conductivity. The highest level of EM reflection was obtained for 7.5 nm MWNT-based composites and makes the value of 0.65–0.7, whereas 22 nm MWNT/PMMA composites are more transparent for EM radiation with reflection coefficient 0.3–0.4 for the highest MWNT loading. Thus MWNT/PMMA composites demonstrate high EM shielding properties.
Read full abstract