The pursuit of sustainable energy solutions has spurred innovation in photovoltaic technology, with dye-sensitized solar cells (DSSCs) emerging as promising contenders. This study presents a novel approach leveraging holmium-doped TiO2/SnO2 nanocomposites sensitized with organic dyes, Arsenazo-III, carminic acid, and dithizone, blended with poly (3-hexylthiophene) (P3HT). Through meticulous characterization and analysis, key parameters including short-circuit current density (Jsc), open-circuit voltage (Voc), fill factor (FF), and overall percent efficiency (%) were scrutinized to evaluate photovoltaic performance comprehensively. Absorption spectra analysis facilitated the calculation of band gaps, revealing a significant reduction from 3.10 eV in pure Titania (TiO2) nanoparticles to 2.72 eV upon doping with Holmium and coupling with SnO2. Notably, Arsenazo-III dye-sensitized holmium-doped TiO2/SnO2 nanocomposites exhibited highest power conversion efficiency, achieving a promising efficiency of 2.10 %, which marked a significant improvement over the reference device (0.82 %). This improvement is attributed to the synergistic effects of holmium dopant incorporation and SnO2 interaction, enhancing light responsiveness. The findings not only validate the efficacy of nanohybrid assemblies but also contribute valuable insights to solar cell technology advancement.
Read full abstract