In recent years, pure laparoscopic radical surgery for Bismuth-Corlette type III and IV hilar cholangiocarcinoma (HCCA) has been preliminarily explored and applied, but the surgical strategy and safety are still worthy of further improvement and attention. To summarize and share the application experience of the emerging strategy of "hepatic hilum area dissection priority, liver posterior separation first" in pure laparoscopic radical resection for patients with HCCA of Bismuth-Corlette types III and IV. The clinical data and surgical videos of 6 patients with HCCA of Bismuth-Corlette types III and IV who underwent pure laparoscopic radical resection in our department from December 2021 to December 2023 were retrospectively analyzed. Among the 6 patients, 4 were males and 2 were females. The average age was 62.2 ± 11.0 years, and the median body mass index was 20.7 (19.2-24.1) kg/m2. The preoperative median total bilirubin was 57.7 (16.0-155.7) μmol/L. One patient had Bismuth-Corlette type IIIa, 4 patients had Bismuth-Corlette type IIIb, and 1 patient had Bismuth-Corlette type IV. All patients successfully underwent pure laparoscopic radical resection following the strategy of "hepatic hilum area dissection priority, liver posterior separation first". The operation time was 358.3 ± 85.0 minutes, and the intraoperative blood loss volume was 195.0 ± 108.4 mL. None of the patients received blood transfusions during the perioperative period. The median length of stay was 8.3 (7.0-10.0) days. Mild bile leakage occurred in 2 patients, and all patients were discharged without serious surgery-related complications. The emerging strategy of "hepatic hilum area dissection priority, liver posterior separation first" is safe and feasible in pure laparoscopic radical surgery for patients with HCCA of Bismuth-Corlette types III and IV. This strategy is helpful for promoting the modularization and process of pure laparoscopic radical surgery for complicated HCCA, shortens the learning curve, and is worthy of further clinical application.
Read full abstract