Plant microtubules undergo extensive reorganization in response to symbiotic and pathogenic organisms. During the development of successful symbioses with rhizobia and mycorrhizal fungi, novel microtubule arrays facilitate the progression of infection threads and hyphae, respectively, from the plant surface through epidermal and cortical cells. During viral and nematode infections, plant microtubules appear to be commandeered by the pathogen. Viruses use plant microtubules for intra and intercellular movement, as well as for interhost transmission. Nematodes manipulate spindle and phragmoplast microtubules to enhance mitosis and partial cytokinesis during the development of syncytia and giant cells. Pathogenic bacteria, fungi and oomycetes induce a range of alterations to microtubule arrays and dynamics. In many situations, the pathogen, or the elicitor or effector proteins derived from them, induce depolymerization of plant cortical microtubule arrays. In some cases, microtubule disruption is associated with the plant defence response and resistance. In other cases, microtubule depolymerization increases plant susceptibility to the invading pathogen. The reasons for this apparent inconsistency may depend on a number of factors, in particular on the identity of the organism orchestrating the microtubule changes. Overall, the weight of evidence indicates that microtubules play an important role in both the establishment of functional symbioses and in defence against invading pathogens. Research is beginning to unravel details about the nature of both the chemical and the mechanical signals to which the plant microtubule arrays respond during biotic interactions.
Read full abstract