Papain, a cysteine-like protease, has extensive applications across various industries including food, chemical, pharmaceutical, drug, and polymer. However, the traditional isolation of papain from Carica papaya plants results in a complex mixture of proteases. Such protease mixtures result in an inability to understand which component enzyme contributed to substrate conversions. Concentrations of constituent enzymes likely differ based on the ripeness of the papaya fruit. Also, constituent enzymes from papaya differ in optimal activity as a function of temperature and pH. Thus, by using papain-like enzymes from papaya fruit, valuable information on component enzyme activity and specificity is lost. Numerous methods have been reported to purify papain and papain-like enzymes from the crude mixture. Often, methods involve at least three steps including column chromatography to separate five cysteine proteases. Such procedures represent tedious processes to manufacture the pure enzymes in Carica papaya extracts. The numerous uses of papain for industrial processes, as well as the probability that certain components of papain crude mixtures will be preferred for specific applications, necessitate alternative methods such as recombinant expression from microbial production systems to meet the high world demand for papain.
Read full abstract