Over the past two decades, a major part of the manufacturing and assembly market has been driven by the increasing demand for customised products. This has created the need for smaller batch sizes, shorter production times, lower costs, and the flexibility to produce families of products—or to assemble different parts—with the same sets of equipment. Consequently, manufacturing companies have deployed various automation systems and production strategies to improve their resource efficiency and move towards right-first-time production. Threaded fastening operations are widely used in assembly and are typically time-consuming and costly. In high-volume production, fastening operations are commonly automated using jigs, fixtures, and semi-automated tools. However, in low-volume, high-value manufacturing, fastening operations are carried out manually by skilled workers. The existing approaches are found to be less flexible and robust for performing assembly in a less structured industrial environment. This motivated the development of a flexible solution, which does not require fixtures and is adaptable to variation in part locations and lighting conditions. As a part of this research, a novel 3D threaded hole detection and a fast bolt detection algorithms are proposed and reported in this article, which offer substantial enhancement to the accuracy, repeatability, and the speed of the processes in comparison with the existing methods. Hence, the proposed method is more suitable for industrial applications. The development of an automated bolt fastening demonstrator is also described in this article to test and validate the proposed identification algorithms on complex components located in 3D space.
Read full abstract