BackgroundLong-term strength deficits are common after Achilles tendon ruptures. Early use of progressive resistance exercises may help reduce strength deficits, but the feasibility of this approach is unknown. The aim was to investigate the feasibility of early progressive resistance exercises regarding patient acceptability and compliance with the intervention.MethodsWe recruited patients with an acute Achilles tendon rupture treated non-surgically. During 9 weeks of immobilisation with a walking boot, participants attended weekly supervised physiotherapy sessions of progressive resistance exercises and performed home exercises, consisting of isometric ankle plantarflexion, seated heel-rise, and elastic band exercises. Acceptability was evaluated using a 7-point Likert scale (1 = very unacceptable and 7 = very acceptable) with feasibility threshold at 80% of the participants rating ≥ 4. Adherence to the exercises was defined as 80% of the participants performing at least 50% of the home exercises. During the intervention, tendon healing and adverse events were monitored.ResultsSixteen participants (mean age 46 (range 28–61), male/female = 13/3) completed the intervention. Pre-injury Achilles tendon total rupture score was 98 (SD 8). All participants rated the acceptability of the exercises ≥ 5 (moderate acceptable to very acceptable) at 9- and 13-week follow-up and 9/16 rated 7 points (very acceptable). Participants performed 74% (range 4–117) of the total prescribed home exercises and 15/16 performed > 50%. One participant was not compliant with the home exercises due to feeling uncomfortable performing these independently. There were no re-ruptures, but one case of deep venous thrombosis.ConclusionsThe early progressive resistance exercise program for treatment of non-surgically treated Achilles tendon rupture was feasible. Future studies should investigate the efficacy of the progressive intervention.Trial registrationThe study was registered at Clinical Trials (NCT04121377) on 29 September 2019. ClinicalTrials: NCT04121377.
Read full abstract