When a biological system is either accidentally or intentionally exposed to radiation, the energy absorbed triggers a number of successive events including damage to living tissues. Major radiation damage is due to the aqueous free radicals generated by the radiolysis of water. These free radicals act as molecular marauders and in turn damage DNA, mitochondrial membrane, lipid, cellular protein, resulting in cellular dysfunction and mortality. In view of the above mentioned facts an experiment was conducted to study the genotoxic effects of γ radiation and its dose effectiveness. The present experiment was conducted on samples of plasmid pBR322 DNA as the in vitro experimental model devoid of any DNA repair and replication machinery. The samples were exposed to different doses of gamma radiations from 1 to 200 Gy. Exposure of plasmid pBR322 DNA to γ radiation resulted in production of single strand breaks as a result of which, the supercoiled (SC) form was converted to relaxed form (RL). Exposure of radiation, even at very low dose of 1 Gy, exhibited a significant damage to DNA resulting in about 70% SC form and 30% RL form of DNA. At a dose of 10 Gy the SC form was reduced to about 37% and further 5% at a dose of 50 Gy with about 88.5 and 6.5% RL and linear (L) forms of DNA respectively. Thus, the disappearance of supercoiled form of plasmid pBR322 DNA was found to be directly related to radiation dose and exhibited a radiation dose dependent pattern.
Read full abstract