Cation exchange membranes are considered a suitable option for zero-gap CO2 electrolysis due to their potential to avoid carbonation and improve carbon efficiency. However, the use of acidic anolytes remains an issue due to high hydrogen production. This study investigates Nafion® membranes (111, 112, 115, 211, and 212) with different thicknesses produced by extrusion or solution-cast processes in a zero-gap cell with an acidic anolyte containing K2SO4. Faradaic efficiencies for CO production (FECO) are higher with thinner membranes, regardless of the manufacturing process, reaching FECO around 75% at 50 mA cm⁻². Additionally, membranes with similar thicknesses (∼50.8 µm) but produced in different ways displayed flow field carbonation after 3 hours of electrolysis at 30°C and 50 mA cm⁻². Linear sweep voltammetry (LSV) in full and half-cell configurations shows limiting diffusion current (iL) relative to proton transport for all the employed membranes, no matter the thickness. In contrast, the iL for Nafion® 115, the thicker membrane, is suppressed, indicating that proton depletion is fast and the electrode surface alkalinization primarily results from water reduction in this case. A mechanistic analysis was performed to explain the behavior of the limiting currents in the cell with Ar- and CO2-feed, indicating that CO2 reduction aids in the consumption of H+ provided by the membrane, increasing the local pH at less negative potentials. Overall, thinner membranes exhibited higher values of FECO and energy efficiency for CO (EE%CO). However, solution-cast membranes are more prone to provide K+, leading to better performance than those prepared by extrusion.
Read full abstract