With rapid advances in new generation information technologies, digital twin (DT), and cyber-physical system, smart assembly has become a core focus for intelligent manufacturing in the fourth industrial evolution. Deep integration between information and physical worlds is a key phase to develop smart assembly process design that bridge the gap between product assembly design and manufacturing. This paper presents a digital twin reference model for smart assembly process design, and proposes an application framework for DT-based smart assembly with three layers. Product assembly station components are detailed in the physical space layer; two main modules, communication connection and data processing, are introduced in the interaction layer; and we discuss working mechanisms of assembly process planning, simulation, predication, and control management in the virtual space layer in detail. A case study shows the proposed approach application for an experimental simplified satellite assembly case using the DT-based assembly application system (DT-AAS) to verify the proposed application framework and method effectiveness.
Read full abstract