In the wet process of semiconductor manufacturing, the high reliability and safety of the liquid supply system are crucial. The pulsation of liquid output from bellows pumps can cause pipeline vibrations, leading to reduced system lifespan and reliability, potential component damage, and ultimately decreased process yield. To address this issue, this paper proposes an adaptive damper based on a combination of cone-slide valve regulation, specifically designed to mitigate pulsations in the liquid supply system. By establishing a mathematical model of the damper, we investigated the parameters affecting its pulsation absorption rate and response characteristics, and developed a prototype. Experimental results indicate that increasing the gas chamber volume and reducing the stiffness of the bellows significantly enhance the damper pulsation absorption rate. The effective flow area of the control valve influences the response characteristics of the system. The damper demonstrates excellent pulsation suppression performance with varied system pressure and input flow rates. The proposed design method and damper model are experimentally validated, providing a theoretical foundation and technical support for optimizing liquid supply systems in semiconductor wet processes.
Read full abstract