Currently the most widely used method for comparing mode shapes from finite elements and experimental measurements is the modal assurance criterion (MAC), which can be interpreted as the cosine of the angle between the numerical and measured eigenvectors. However, the eigenvectors only contain the displacement of discrete coordinates, so that the MAC index carries no explicit information on shape features. New techniques, based upon the well-developed philosophies of image processing (IP) and pattern recognition (PR) are considered in this paper. The Zernike moment descriptor (ZMD), Fourier descriptor (FD), and wavelet descriptor (WD) are the most popular shape descriptors due to their outstanding properties in IP and PR. These include (1) for the ZMD-rotational invariance, expression and computing efficiency, ease of reconstruction and robustness to noise; (2) for the FD—separation of the global shape and shape-details by low and high frequency components, respectively, invariance under geometric transformation; (3) for the WD—multi-scale representation and local feature detection. Once a shape descriptor has been adopted, the comparison of mode shapes is transformed to a comparison of multidimensional shape feature vectors. Deterministic and statistical methods are presented. The deterministic problem of measuring the degree of similarity between two mode shapes (possibly one from a vibration test and the other from a finite element model) may be carried out using Pearson's correlation. Similar shape feature vectors may be arranged in clusters separated by Euclidian distances in the feature space. In the statistical analysis we are typically concerned with the classification of a test mode shape according to clusters of shape feature vectors obtained from a randomised finite element model. The dimension of the statistical problem may often be reduced by principal component analysis. Then, in addition to the Euclidian distance, the Mahalanobis distance, defining the separation of the test point from the cluster in terms of its standard deviation, becomes an important measure. Bayesian decision theory may be applied to formally minimise the risk of misclassification of the test shape feature vector. In this paper the ZMD is applied to the problem of mode shape recognition for a circular plate. Results show that the ZMD has considerable advantages over the traditional MAC index when identifying the cyclically symmetric mode shapes that occur in axisymmetric structures at identical frequencies. Mode shape recognition of rectangular plates is carried out by the FD. Also, the WD is applied to the problem of recognising the mode shapes in the thin and thick regions of a plate with different thicknesses. It shows the benefit of using the WD to identify mode-shapes having both local and global components. The comparison and classification of mode shapes using IP and PR provides a ‘toolkit’ to complement the conventional MAC approach. The selection of a particular shape descriptor and classification method will depend upon the problem in hand and the experience of the analyst.
Read full abstract